J. Enzyme Inhibition, 1990, Vol. 4, pp. 137-142 Reprints available directly from the publisher Photocopying permitted by license only

ENZYME INACTIVATION BY POTENTIAL METABOLITES OF AN AROMATASE-ACTIVATED INHIBITOR (MDL 18,962)

J. O'NEAL JOHNSTON*, C.L. WRIGHT, G.W. HOLBERT and H.D. BENSON

Merrell Dow Research Institute, 2110 E. Galbraith Road, Cincinnati, OH 45215, USA.

(Received 5 June 1990)

MDL 18,962, 19-acetylenic androstenedione, is an enzyme-activated inhibitor of estrogen biosynthesis which is in Phase I clinical evaluations as a potential therapeutic agent for estrogen-dependent cancers. 19-Acetylenic analogs corresponding to the major metbolites of androstenedione were synthesized as potential metabolites of MDL 18,962. These compounds were 19-acetylenic testosterone, the product of 17β -hydroxy steroid oxidoreductase, 6β -hydroxy- and 6-oxo-19-acetylenic androstenedione, products of P₄₅₀ steroid 6β -hydroxylase and alcohol dehydrogenase, respectively. All of these analogs showed time-dependent inactivation of human placental aromatase activity. The time-dependent K_i and $t_{1/2}$ at infinite inhibitor concentration (τ_{50}) were 4.3 nM, 12.0 min for MDL 18,962; 28 nM, 7.8 min for 17-hydroxy analog; 13 nM, 37 min for 6β -hydroxy analog; and 167 nM, 6.1 min for the 6-oxo analog. The 19-acetylenic testosterone, a confirmed metabolite from primate studies, was 25% as efficient as MDL 18,962 for aromatase inactivation, while 6β -hydroxy- and 6-oxo analogs were 11% and 5%, respectively as efficient as their parent compound. These data indicate that first-pass metabolism of MDL 18,962 does not cause an obligatory loss of time-dependent inhibition of human aromatase activity.

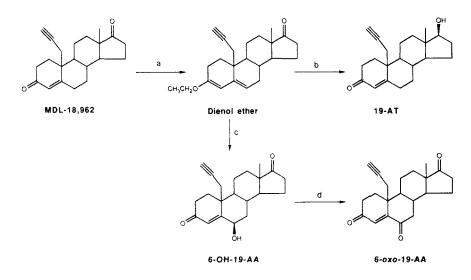
KEY WORDS: Aromatase Inhibition, MDL 18,962, Estrogen Biosynthesis, P₄₅₀ Hydroxylation, steroid 17β-Dehydrogenase

INTRODUCTION

MDL 18,962 has been shown to be an enzyme inhibitor of estrogen biosynthesis in rodent and primate models.¹⁻³ Human hepatic P_{450} monooxygenases metabolize androgens mainly via 6 β -hydroxylation with limited formation of 7 α - and 16 α -hydroxylated metabolites.^{4.5} Therefore, three potential metabolites of MDL 18,962, 19-acetylenic testosterone, 6 β -hydroxy, and 6-oxo-19-acetylenic androstenedione, were synthesized and evaluated for their competitive and time-dependent inhibition of human placental aromatase.

^{*}Correspondence.

Abbreviations: **MDL 18,962**, 19-acetylenic androstenedione, 10-(2-propynyl)estr-4-ene-3,17-dione, Chemical Abstract Registry No. 77016-85-4; **19-AT**, 19-acetylenic testosterone, 17β -hydroxy-10-(2-propynyl)estr-4-ene-3-one; **6-OH-19-AA**, 6-hydroxy-19-acetylenic androstenedione, β -hydroxy-10-(2-propynyl)estr-4-ene-3,17-dione; **6-oxo-19-AA**, 6-oxo-19-acetylenic androstenedione, 6-oxo-10-(2-pro-pynyl)estr-4-ene-3,17-dione.


MATERIALS AND METHODS

Chemicals and Reagents

All chemical reagents for aromatase assays were as previously described.^{1,6} Labeled substrate [1-³H]-androstenedione (28.2 Ci/mmol) was obtained from NEN Research Products (Boston, MA), and its radiochemical purity (99+%) confirmed by an HPLC system⁷ prior to use. Steroidal aromatase inhibitors were synthesized and characterized by standard analytical methods at Merrell Dow Research Institute (Scheme 1). MDL 18,962 was prepared as published⁸ and was converted to the dienol ether analog by the method of Burn et al.⁹ Sodium borohydride reduction with subsequent hydrolysis of the enol ether afforded 19-AT. Exposure of a stirred ethanolic solution of dienol ether of MDL 18,962 to direct sunlight¹⁰ provided the 6-hydroxy deriative, 6-OH-19-AA, which was oxidized to the ketone, 6-oxo-19-AA, by the Swern procedure.11

19-Acetylenic testosterone (19-AT): m.p. 118-120°C; IR (KBr) v 3420, 3330, 2110, 1665 cm^{-1} ; NMR (CDCl₃) $\delta 0.83$ (s, 3 H, 18-CH₃), 2.01 (t, 1 H, J = 2 Hz, H-C = C), 3.65 (br t, 1 H, J = 7 Hz, H₁₇), 5.89 (s, 1 H, H₄), UV (EtOH) λ_{max} 241 nm $(\varepsilon = 15,500)$. Anal. Calcd. for $C_{21}H_{28}O_2$: C, 80.73; H, 9.03. Found: C, 80.77; H, 9.23%.

6β-OH-19-Acetylenic androstenedione (6-OH-19-AA): m.p. 204–206°C, IR (KBr) v 3495, 3250, 2120, 1730, 1680 cm⁻¹; NMR (CDCl₃) δ 0.92 (s, 3 H, 18-CH₃), 2.12 (t, $1 \text{ H}, \text{ J} = 2.5 \text{ Hz}, \text{ HC} \equiv \text{C}$), 4.40 (br s, 1 H, H₆), 6.00 (s, 1 H, H₄); MS (70 ev) m/e 326 (M^+) , 269 (100%); MS (CI/CH₄) m/e 327 (M + H, 100%); UV (EtOH) λ_{max} 237 nm $(\varepsilon = 11,700)$. Anal. Calcd for $C_{21}H_{26}O_3$: C, 77.27; H, 8.03. Found: C, 77.18; H, 8.06%

SCHEME 1. Chemical Synthesis of Inhibitors

Reagents and conditions for each reaction were: (a) (EtO)₃CH/pTsOH/EtOH/THF, 25°C, 1.25 h; (b) NaBH₄, EtOH/THF, 10% aq. NaOH, 25°C, 2 h; (c) EtOH, direct sunlight, 6 h; (d) (i) ClCOCOCl, DMSO, CH_2Cl_2 , - 50°C; (ii) Et_3N_2 .

For personal use only.

6-Oxo-19-acetylenic androstenedione (6-oxo-19-AA): m.p. 176-178°C; IR (KBr) ν 3300, 2120, 1735, 1690, 1673 cm⁻¹; NMR (CDCl₃) δ 0.98 (s, 3 H, 18-CH₃), 2.12 (t, 1 H, J = 2 H, HC \equiv C), 6.39 (s, 1 H, H₄); MS (70 ev) *m/e* 324 (M⁺), 282 (100%); MS (CI/CH₄) *m/e* 325 (M⁺ + 1, 100%); UV (EtOH) λ_{max} 247 nm (ϵ = 8620). Anal. Calcd for C₂₁H₂₄O₃: C, 77.75; H, 7.46. Found: C, 77.79; H, 7.51%.

Enzyme Assays

Lyophilized microsomes (39% protein) with an enzyme activity of 34.6 pmoles estrogen/min/mg protein were prepared from term human placentas.¹ Time-dependent aromatase assays were prepared as previously described^{1,6} using 500 μ M androstenedione as substrate. Analogs of MDL 18,962 were evaluated at 5–100 nM. MDL 18,962 at 5 nM was evaluated in these assays as a concurrent positive reference. Kinetic data from previous experiments² with MDL 18,962 were utilized for comparative purposes. The isotopic distribution for [1-³H]-androstenedione was estimated to be 57% 1 β from the percentage of ³H₂O formed during a 90 min aromatase assay. This distribution was confirmed by product isolation of [³H]-estrogens by HPLC.⁷ Data expressed as moles of estrogen formed were adjusted for isotopic distribution. Duplicate assays were conducted for each inhibitor concentration. The amount of ³H₂O product measured was corrected for assay background using assay tubes with solvent-inactivated enzyme. Time-dependent enzyme kinetic data were expressed as percent of control enzyme activity which adjusts for inherent loss of aromatase activity (16%) during the 20-min preincubation phase.

Estimates of enzyme affinities for pseudo-substrate analogs were determined from 0 min preincubation data as previously described⁶ using substrate concentration of 500 nM and K_m for androstenedione of 40 nM. Time-dependent enzyme inhibition constants for apparent $K_{i(inact)}$ were estimated via the method of Kitz and Wilson¹² from time-dependent inhibition experiments. Least-squares regression analysis of the reciprocal of inhibitor concentration versus the respective enzyme half-life of enzyme inactivation, $t_{1/2}$, at each inhibitor concentration was utilized for these $K_{i(inact)}$ estimates.¹³ Statistical analyses^{14,15} were applied to the time-dependent inhibition rates to determine significance of slope and degree of linearity.

RESULTS

The 6β -hydroxy and 17β -hydroxy analogs had apparent affinity values for aromatase which were equivalent to or lower than the apparent K_m for androstenedione, 40 nM. The 6-oxo- analog had approximately 10-fold weaker affinity for the enzyme than the substrate. In inactivation studies all compounds produced time-dependent, pseudofirst-order inactivation of aromatase (Figure 1). Kinetic analysis of this inactivation process^{12,13} provided apparent $K_{i(inact)}$ which represents the inhibitor concentration required to produce half-maximal rate of inactivation. The first-order rate constant for inactivation (k_{cat}) and the half-time of inactivation (τ_{50}) at infinite inhibitor concentration are shown in Table 1. The efficiencies of these analogs as inactivators of aromatase were compared to MDL 18,962 using the ratio of $k_{cat}/K_{i(inact)}$. The 17β -hydroxy analog was approximately one-fourth as efficient as MDL 18,962, while the 6β -hydroxy was one-tenth and the 6-oxo was about one-half of the 6β -hydroxy analog.

RIGHTSLINK()

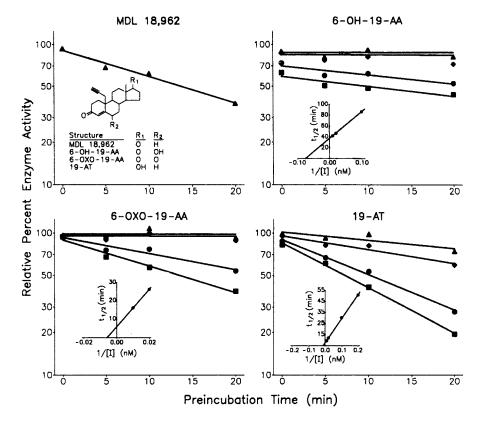


FIGURE 1 Time-dependent inhibition of aromatase. Steroidal inhibitors were preincubated with $136 \,\mu g$ of human placental microsomal protein and NADPH-generating systems for 0–20 min prior to addition of $[1-^{3}H]$ -androstenedione (500 nM; 0.8 μ Ci) for 10 min assay at 25°C. Product formed was quantitated by ³H release assay. The inserts are Kitz-Wilson plots¹² of 1/[I] vs. $t_{1/2}$ for 5 nM \clubsuit ; 10 nM \clubsuit ; 50 nM \clubsuit ; 100 nM \blacksquare .

Inhibitors	$\binom{K_{i(\mathrm{inact})}}{(\mathrm{nm})}$	τ ₅₀ (min)	k_{cat} (sec ⁻¹)	$k_{\rm cat}/K_{\rm i(inact)}$	Ranking ² (%)
MDL 18,962	4.3	12.0	9.6×10^{-4}	223,000	100
6-OH-19-AA	13.4	36.7	3.1×10^{-4}	24,000	11
6-OXO-19-AA	167.1	6.1	1.9×10^{-3}	11,000	5
19-AT	28.1	7.8	1.5×10^{-3}	53,000	24

 TABLE I

 Kinetic Analysis of MDL 18,962 Analogs for Inhibition of Placental Aromatase Inhibition.

¹Estimated from pseudo-first-order kinetics using Kitz-Wilson plots.¹²

²Compounds compared to MDL 18,962 = 1.0. Time-dependent data² for MDL 18,962 was used to rank the relative efficiency of aromatase inactivation.

DISCUSSION

Lowering of estrogen levels *in vivo* via enzyme inhibitors of aromatase has been shown to be an effective pharmacological strategy in treatment of clinical conditions associated with elevated estrogen biosynthesis.^{16,17} MDL 18,962 has been characterized as an enzyme-activated inhibitor of aromatase^{1,2} and shown to be active *in vivo*^{2,3} with long-lasting biochemical and pharmacological effects.¹⁸ When female baboons were intravenously injected with [¹⁴C]-MDL 18,962, the inhibitor was rapidly converted (97%) via first-pass metabolism to multiple radioactive urinary components. These metabolites were separated by HPLC chromatography and analyzed by mass spectrometry. The two major metabolites of [¹⁴C]-MDL 18,962 representing approximately 30% each of the total [¹⁴C] were a steroidal ring hydroxylated compound and the 17 β -hydroxy analog (unpublished data).

The conversion of 19-acetylenic androstenedione (MDL 18,962) to 19-acetylenic testosterone would occur via the reversible 17β -hydroxy steroid oxidoreductase. Steroidal B-ring hydroxy metabolites would predictably be the 6α -hydroxy, 6β -hydroxy, or 7α -hydroxy analog formed via hepatic metabolism. The 6β -hydroxylation is the major hydroxylation pathway in human liver microsomes.¹⁹ In contrast to the more intensely studied rat hepatic cytochrome P₄₅₀ systems,^{4,20-22} no sex-related differences were observed in metabolism of testosterone at the C6 position in human liver.⁵ The 6-oxo analog could presumably be formed from the 6β -hydroxy compound via nonspecific hepatic alcohol dehydrogenase.²³

Therefore the 6β -hydroxy, 6-oxo, and the 17β -hydroxy analogs of MDL 18,962 were synthesized and evaluated for aromatase inhibitory activity. These potential metabolites of MDL 18,962 exhibited time-dependent and concentration dependent inhibition of aromatase activity of human placental microsomes. The ratio of the rate of enzyme inactivation (k_{cat}) to half-maximal inhibitor concentration $K_{i(inact)}$ permits a rank ordering of these inhibitors in relationship to MDL 18,962, thus MDL 18,962 $\geq 17\beta$ -hydroxy $> 6\beta$ -hydroxy > 6-oxo analogs in relative inhibitory activity. These data suggested that biotransformation of MDL 18,962 does not cause an obligatory loss of its enzyme-activated inhibitor of aromatase.

References

- 1. Johnston J.O., Wright, C.L. and Metcalf, B.W. (1984) Endocrinology, 115, 776.
- 2. Johnston, J.O. (1987) Steroids, 50, 105.
- 3. Longcope, C., Femino, A.M. and Johnston, J.O. (1988) Endocrinology, 122, 2007.
- 4. Waxman, D.J. (1988) Biochem. Pharmacol., 37, 71.
- Kremers, P., Beaune, P., Cresteil, T., DeGraeve, J., Columelli, S., Leroux, J.-P. and Gielen, J.E. (1981) Eur. J. Biochem., 118, 599.
- 6. Burkhart, J.P., Weintraub, P.M., Wright, C.L. and Johnston, J.O. (1985) Steroids, 45, 357.
- 7. Schatzman, G.L., Laughlin, M.E. and Blohm, T.R. (1988) Analyt. Biochem., 175, 219.
- 8. Metcalf, B.W., Wright, C.L., Burkhart, J.P. and Johnston, J.O. (1981) J. Am. Chem. Soc., 103, 3221.
- Burn, D., Cooley, G., Davies, M.T., Ducker, J.W., Ellis, B., Feather, P., Hiscock, A.K., Kirk, D.N., Leftwick, A.P., Petrow, V. and Williamson, D.M. (1964) *Tetrahedron*, 20, 597.
- 10. Gardi, R. and Lusignani, A. (1967). J. Org. Chem., 32, 2647.
- 11. Mancuso, A.J., Huang, S.-L. and Swern, D. (1978) J. Org. Chem., 43, 2480
- 12. Kitz, R. and Wilson, I.B. (1962) J. Biol. Chem., 237, 3245.
- 13. Jung, M.J. and Metcalf, B.W. (1975) Biochem. Biophys. Res. Commun., 67, 301.
- RS/1 computer programs (RS/1.Release 2). BBN Software Products Corporation, Cambridge, MA. 1985.

RIGHTSLINKA)

J. O'NEAL JOHNSTON ET AL.

- 15. Steele, R.G.D. and Torrie, J.H. (1960) Principles and Procedures of Statistics. New York: McGraw-Hill.
- Henderson, D., Habenicht, U.-F., Nishino, Y., Kerb, U. and ElEtreby, M.F. (1986) J. Steroid Biochem., 25, 867.
- 17. Brodie, A.M.H., Wing, L.Y., Gross, P., Dowsett, M. and Coombes, R.C. (1986) J. Steroid Bichem., 25, 859.
- 18. Johnston, J.O., Wright, C.L. and Shumaker, R.C. (1989) J. Steroid Biochem., 33, 521.
- 19. Kawano, S., Kamataki, T., Yasumori, T., Yamazoe, Y. and Kato, R. (1987) J. Biochem., 102, 493.
- 20. Waxman, D.J., Ko, A. and Walsh, C. (1983) J. biol. chem., 258, 11937
- 21. Wood, A.W., Ryan, D.E., Thomas, P.E. and Levin, W. (1983) J. Biol. Chem., 258, 8839.
- 22. Bitar, M.S. and Shapiro, B.H. (1987) Biochem. Pharmacol., 36, 3543.
- 23. Felsted, R.L. and Bachur, N.R. (1980) Drug Metabolism Rev., 11, 1.